

Molecular Hydrogen Formation from Photocatalysis of Methanol on TiO₂(110)

Chenbiao Xu,^{†,‡,§} Wenshao Yang,^{†,§} Qing Guo,^{*,†} Dongxu Dai,[†] Maodu Chen,[‡] and Xueming Yang^{*,†}

[†]State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian 116023, Liaoning, P. R. China

[‡]School of Physics and Optoelectronic Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China

Supporting Information

ABSTRACT: It is well established that adding methanol to water could significantly enhance H₂ production by TiO₂. Recently, we have found that methanol can be photocatalytically dissociated on $TiO_2(110)$ at 400 nm via a stepwise mechanism. However, how molecular hydrogen can be formed from the photocatalyzed methanol/ $TiO_2(110)$ surface is still not clear. In this work, we have investigated deuterium formation from photocatalysis of the fully deuterated methanol (CD₃OD) on $TiO_2(110)$ at 400 nm using a temperature programmed desorption (TPD) technique. Photocatalytic dissociation products formaldehyde (CD₂O) and D-atoms on BBO sites (via D₂O TPD product) have been detected. In addition to D₂O formation by heating the photocatalyzed methanol/ $TiO_2(110)$ surface, we have also observed D₂ product formation. D₂ is clearly formed via thermal recombination of the D-atoms on the BBO sites from photocatalysis of methanol. Experimental results indicate that D2O formation is more important than D_2 formation and that D_2 formation is clearly affected by the D₂O formation process.

T iO₂ has attracted enormous interest in heterogeneous catalysis, photocatalysis, solar energy devices, etc.¹⁻⁸ Photocatalytic water splitting by TiO₂ is especially attractive because of its potential application in clean hydrogen production.⁹ A previous study found that pure TiO₂ is not active for hydrogen production from pure water.¹⁰ Adding methanol to pure water, however, can dramatically enhance hydrogen production, the photochemistry of methanol has been extensively investigated on single crystal TiO₂ surfaces^{12–31} and TiO₂ powders.^{32–35} Although investigations on powder TiO₂ with methanol steam^{32–35} and a water–methanol mixture¹¹ show that hydrogen can be produced from methanol by reaction,

$$CH_3OH \xrightarrow{h\nu + heat, \ TiO_2} CH_2O + H_2$$
(1)

the detailed mechanism of gaseous hydrogen formation from methanol photocatalysis on TiO_2 remains unknown. In a recent study,²⁸ we have shown that the elementary photocatalytic dissociation of CH₃OH on $TiO_2(110)$ without any other coadsorbed species occurs in a stepwise mechanism in which the O–H dissociation proceeds first and is then followed by

C–H dissociation to form formal dehyde (CH_2O) with only methanol adsorption on $\rm TiO_2(110),$

$$CH_{3}OH(Ti_{5C}) \xrightarrow{h\nu, TiO_{2}(110)} CH_{3}O(Ti_{5C}) + H_{BBO}$$
(2)

$$CH_{3}O(Ti_{5C}) \xrightarrow{h\nu, TiO_{2}(110)} CH_{2}O(Ti_{5C}) + H_{BBO}$$
(3)

where Ti_{5C} refers to a five-coordinated $Ti^{4+}(Ti_{5C})$ site, and H_{BBO} refers to an H atom adsorbed on a bridge-bonded oxygen (BBO) site on the $TiO_2(110)$ surface. From our experiment, we have found that both dissociation steps are photoinitiated. This means that at low temperature photocatalytic dissociation products from CH₃OH, i.e., CH₂O and H atoms on BBO sites, are all left on the TiO₂ surface after laser irradiation, whereas Henderson and co-workers found that molecular CH₃OH is not photoactive on $TiO_2(110)$ using a Hg lamp as the surface photocatalysis source.²⁶ In our experiment,^{28,36} we used a femtosecond laser source that has considerably higher photon flux than the Hg lamp used in ref 26, in addition to the highly sensitive mass spectrometric detector with a vacuum background of 1×10^{-12} Torr. We believe this makes our experiment much more sensitive in detecting TPD products. Further oxidation of CH_3OH on $TiO_2(110)$ to form methyl formate has also been observed in three different laboratories.³⁶⁻³⁸ However, the important question of how hydrogen molecules are formed from the photocatalysis of methanol on $TiO_2(110)$ remains unanswered.

In order to understand the mechanism of hydrogen formation, the photocatalytic chemistry of CD₃OD has been investigated on the $TiO_2(110)$ surface using temperature programmed desorption (TPD), in combination with laser surface photocatalysis. The surface photocatalysis-TPD apparatus used in this work has been described previously in detail.^{28,39} The base pressure of the sample chamber of this apparatus is less than 6×10^{-11} Torr. A highly sensitive quadrupole mass spectrometer (Extrel) is used to detect TPD products. To achieve the highest detection sensitivity and the lowest background, an extremely high vacuum of 1.5×10^{-12} Torr was achieved and maintained in the electron-impact ionization region during the experiments for sensitive product detection. The TiO₂(110) surface was cleaned by cycles of Ar^+ sputtering and resistive heating to 850 K in a vacuum until all impurities were removed. The $TiO_2(110)$ surface contained 3–

 Received:
 April 4, 2013

 Published:
 July 2, 2013

4% O-vacancy defects as determined by H_2O TPD.⁴⁰ CD₃OD (Aldrich, 99+%) was purified by several freeze–pump–thaw cycles and was introduced onto the TiO₂(110) surface with an accurately calibrated molecular beam doser. The surface temperature was maintained at 120 K during CD₃OD sample dosing, and it typically rose to ~180 K during laser irradiation. The 400 nm irradiating light came from a frequency doubled Ti:Sapphire femtosecond laser (repetition rate 1 kHz). The average intensity of the laser beam on the sample was 400 mW with a diameter of 6 mm, corresponding to a flux of ~1.44 × 10¹⁸ photons cm⁻² s⁻¹. The light was incident on the TiO₂(110) at ~30° with respect to the TiO₂(110) surface. TPD spectra after laser irradiation were measured using a heating rate of 2 K/s, with the surface normal directly pointing to the mass spectrometer.

The first experiment we carried out in this work was the investigation of the photocatalytic dissociation of CD₃OD by measuring the TPD spectra of the CD₃OD reactant (Figure S1A) and CD₂O product (Figure S1B) as a function of 400 nm laser irradiation time. The TPD spectra at m/z = 36 (CD₃OD⁺) and m/z = 32 (CD₂O⁺) show that CD₃OD becomes photocatalytically dissociated, while CD₂O is formed. This result is analogous to our earlier observations involving CD₃OH²⁸ and CH₃OH³⁶ on TiO₂(110). In order to detect

D-atoms on the BBO rows from the photocatalytic dissociation of CD_3OD on $TiO_2(110)$, TPD spectra (Figure 1A) at m/z = 20 (D_2O^+) have been measured, after different irradiation durations following adsorption of 0.5 ML of CD_3OD on $TiO_2(110)$. Two main features are observed in the TPD spectra. The peak (marked with *) slightly below 300 K is attributed to the dissociative ionization signal of molecular adsorbed CD_3OD in the electron-impact ionizer and to a small impurity of D_2O in CD_3OD , which makes this peak

Figure 1. (A) Typical TPD spectra collected at m/z = 20 (D₂O⁺) following different laser irradiation times at 400 nm. (B) Typical TPD spectra collected at $m/z = 4(D_2^+)$ following different laser irradiation times at 400 nm.

temperature lower than that of the molecularly desorbed CD_3OD TPD peak. With no UV irradiation, a TPD peak at about 520 K is also observed, and it is the result of the recombination desorption of D_2O made from two OD groups on BBO rows that produce water and leave behind an oxygen vacancy (see Figure 3):²⁸

$$2DO_{BBO} \xrightarrow{heat, TiO_2(110)} D_2O(gas) + BBOv$$
(4)

These D atoms are mainly produced by spontaneous dissociation of CD₃OD at the BBO vacancy (BBOv) sites.⁴¹ As laser irradiation time increases, the D₂O peak from hydroxyl recombination increases in magnitude and the peak gradually shifts to lower temperatures. This shift is related to the increasing D-atom density on BBO sites from the photocatalytic dissociation of CD₃OD adsorbed on the Ti_{SC} sites. It is interesting to point out that oxygen vacancy will be created on the surface after recombination desorption of D₂O from hydroxyl groups on BBO rows.^{28,29}

In order to determine if the molecular D_2 product could be formed, TPD spectra at m/z = 4 (D_2^+) were measured after 400 nm laser irradiation. Figure 1B shows TPD spectra for four different laser irradiation periods, corresponding to four different m/z = 4 (D_2^+) sources. The TPD peak (marked with *) in the spectra slightly below 300 K comes from ionizer fragmentation of CD₃OD (see Figure S2). The D_2^+ signal from this source decreases slightly as the laser irradiation time increases because of the depletion of CD₃OD on the surface. In addition, D_2O could also crack to produce D_2^+ in the ionizer. However, this D_2^+ source is negligible (see Figure S3). The third source of the D_2^+ ion is from the thermally desorbed CD₃ product from dissociatively adsorbed CD₃OD on BBOv sites. This signal appears as a shoulder at ~630 K in the spectra and should not be dependent on the laser irradiation time.

In addition to the two considerable D_2^+ sources, another obvious source is the thermally desorbed D_2 product formed via recombinative desorption of D atoms on the BBO rows. As indicated in Figure 1B, the TPD peak near 500 K is most likely due to this source. This peak is ~50 K higher than the recombined D_2O TPD peak and is also strongly dependent on the laser irradiation duration. When the surface temperature is above 450 K, molecularly adsorbed methanol and formaldehyde product on Ti_{5C} have been already desorbed, and only hydrogen atoms on BBO rows and dissociatively adsorbed methanol on BBOv are still present on the surface.²⁸ Therefore, we can conclude that the 500 K TPD desorption peak at m/z =4 arises from D_2 formation from recombination of D atoms on BBO rows (see Figure 3):

$$2DO_{BBO} \xrightarrow{heat, TiO_2(110)} D_2(gas) + 2BBO$$
(5)

We have attempted to detect photodesorbed products at m/z = 4 during irradiation, and no signals were detected, suggesting that D₂ product formation is not photodriven. From the above results and previous studies, we thus propose that molecular hydrogen formation from methanol photocatalysis on TiO₂(110) has been the result of three elementary steps: stepwise photocatalytic dissociation of methanol (two steps) and thermal recombination of H atoms on BBO sites. We therefore conclude that hydrogen formation is a process whose rate-determining step is thermally activated recombination, as opposed to an electron- or hole-induced reaction.

In order to evaluate the relative importance of D_2 formation compared to D_2O formation, the yields of D_2O and D_2 as a function of laser irradiation time have been measured (see Figure 2). The absolute yields of D_2O and D_2 products shown

Figure 2. TPD product yield for D_2O and D_2 as a function of irradiation time, derived from data in Figure 1.

in Figure 2 have been already calibrated based on the detection efficiencies of the two products in the quadrupole mass spectrometer detector. The calibrated result indicates that D₂ formation is clearly less important than D₂O formation. This is consistent with the observation that the desorption of D₂ starts from \sim 375 K, which is \sim 50 K higher than that of D₂O. The comparison of TPD temperatures suggests that D₂ formation on $TiO_2(110)$ is more difficult than D_2O formation. This result is fortuitously consistent with previous theoretical calculations, which show that the barrier for H₂ recombinative desorption from BBO sites on $TiO_2(110)$ is ~1.6 eV, which is considerably higher than the barrier (1.10 eV) for H₂O desorption from \widetilde{BBO} sites.⁴² In ref 42, no H₂ product was detected from the highly hydroxylated $TiO_2(110)$ surface and was attributed to this high energy barrier. From these results, they reached a conclusion that hydrogen recombination is not possible on $TiO_2(110)$, whereas our result clearly indicates that hydrogen recombination on $TiO_2(110)$ can happen. In addition, the observed 50 K difference only in the appearance temperature and the peak temperature between D_2 and D_2O in this work implies that a calculated D₂ recombination barrier of 1.6 eV might be a little too high relative to the D_2O desorption.

In comparison with molecular hydrogen formation from recombination of hydrogen atoms on $\text{TiO}_2(110)$ (Figure 3), molecular hydrogen formation on H-atom covered Ru(0001),⁴³ Ru(001),⁴⁴ Pt(111),⁴⁵ and Al(111)⁴⁶ is much easier and occurs in a temperature range of 250–400 K, which is more than 100 K lower than the temperature for H₂ formation on $\text{TiO}_2(110)$. Previous studies^{11,33} have demonstrated that noble-metal-modified TiO₂ can indeed enhance the efficiency of hydrogen production with a methanol–water mixture considerably. This implies that hydrogen migrations from TiO₂ to a noble metal surface could facilitate hydrogen production. These earlier

Figure 3. Mechanism of molecular water and molecular hydrogen (deuterium) production from hydrogen atoms on $TiO_2(110)$ surface.

results in combination with our new TPD experiments show that molecular hydrogen formation via recombination of Hatoms is probably the rate-determining step in the photocatalytic hydrogen production from methanol on TiO_2 .

From Figure 2, the rate of D_2O product formation as a function of laser irradiation time is quite different from that of D_2 product. The D_2O yield increases very fast at first and then reaches a plateau, and this yield is anticorrelated well with the depletion of CD₃OD. Since one oxygen defect is created for one D_2O molecule formed during TPD, it appears that BBO defects make D_2O formation more difficult. The D_2 yield, however, increases faster than that of D_2O as the number of BBO defects increases. Hence, more BBO defects created by H_2O recombinative desorption on the surface can make formation of D_2 easier than D_2O formation.

In summary, our experimental investigation provides strong evidence that molecular hydrogen can be produced via a thermal recombination reaction of hydrogen atoms on BBO rows, produced by methanol photocatalysis on rutile $TiO_2(110)$ with 400 nm irradiation, elucidating a possible and universal mechanism for H₂ production with TiO_2 -based catalysts. From our experimental results, it clearly shows that water formation from hydroxyl pairs on BBO rows has a lower barrier than molecular hydrogen formation. From the results of this work, we can conclude that lowering the barrier for hydrogen production and suppressing water formation. Furthermore, adding water to the methanol sample may also help the hydrogen production process by impeding reaction 4 and maintain more H (or D) atoms on the BBO rows.

ASSOCIATED CONTENT

S Supporting Information

TPD data for CD₃OD, CD₂O, and D₂O (Figures S1–S3). This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

guoqing@dicp.ac.cn; xmyang@dicp.ac.cn
Author Contributions

[§]C.X. and W.Y. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Chinese Academy of Sciences, National Science Foundation of China, and the Chinese Ministry of Science and Technology. We also want to thank Prof. Tim Minton for many helpful discussions during the course of this work.

REFERENCES

- (1) Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. *Chem. Rev.* **1995**, *95*, 69–96.
- (2) Thompson, T. L.; Yates, J. T., Jr. Chem. Rev. 2006, 106, 4428–4453.
- (3) Henderson, M. A.; Otero-Tapia, S.; Castro, M. E. Faraday Discuss. **1999**, *114*, 313–319.
- (4) Gong, X.-Q.; Selloni, A.; Dulub, O.; Jacobson, P.; Diebold, U. J. Am. Chem. Soc. 2008, 130, 370–381.
- (5) Henderson, M. A. Surf. Sci. Rep. 2011, 66, 185-297.
- (6) Pang, C. L.; Lindsay, R.; Thornton, G. Chem. Soc. Rev. 2008, 37, 2328-2353.
- (7) Fujishima, A.; Zhang, X.; Tryk, D. Surf. Sci. Rep. 2008, 63, 515–582.
- (8) Diebold, U. Surf. Sci. Rep. 2003, 48, 53-229.
- (9) Fujishima, A.; Honda, K. Nature 1972, 238, 37-38.
- (10) Sato, S.; White, J. M. Chem. Phys. Lett. 1980, 72, 83-86.
- (11) Kawai, T.; Sakata, T. J. Chem. Soc., Chem. Commun. 1980, 15, 694–695.
- (12) Henderson, M. A.; Otero-Tapia, S.; Castro, M. E. Surf. Sci. 1998, 412/413, 252–272.
- (13) Farfan-Arribas, E.; Madix, R. J. Surf. Sci. 2003, 544, 241–260.
 (14) Zhang, Z. R.; Bondarchuk, O.; White, J. M.; Kay, B. D.;
- Dohnálek, Z. J. Am. Chem. Soc. 2006, 128, 4198-4199.
- (15) Sanchez de Armas, R.; Oviedo, J.; San Miguel, M. A.; Sanz, J. F. J. Phys. Chem. C 2007, 111, 10023–10028.
- (16) Oviedo, J.; Sanchez de Armas, R.; San Miguel, M. A.; Sanz, J. F. J. Phys. Chem. C 2008, 112, 17737–17740.
- (17) Farfan-Arribas, E.; Madix, R. J. J. Phys. Chem. B 2002, 106, 10680-10692.
- (18) Onda, K.; Li, B.; Zhao, J.; Petek, H. *Surf. Sci.* **2005**, 593, 32–37. (19) Wang, L.-Q.; Ferris, K. F.; Winokur, J. P.; Shultz, A. N.; Baer, D.
- R.; Engelhard, M. H. J. Vac. Sci. Technol. A 1998, 16, 3034-3040.
- (20) Sanchez, V. M.; Cojulun, J. A.; Scherlis, D. A. J. Phys. Chem. C 2010, 114, 11522–11526.
- (21) Martinez, U.; Vilhelmsen, L. B.; Kristoffersen, H. H.; Stausholm-Moller, J.; Hammer, B. *Phys. Rev. B* **2011**, *84*, 205434.
- (22) Zhao, J.; Yang, J. L.; Petek, H. Phys. Rev. B 2009, 80, 235416.
 (23) Wong, G. S.; Kragten, D. D.; Vohs, J. M. J. Phys. Chem. B 2001, 105, 1366–1373.
- (24) Zhou, C.; Ren, Z.; Tan, S.; Ma, Z.; Mao, X.; Dai, D.; Fan, H.;
- Yang, X.; LaRue, J.; Cooper, R.; Wodtke, A. M.; Wang, Z.; Li, Z.; Wang, B.; Yang, J.; Hou, J. *Chem. Sci.* **2010**, *1*, 575–580.
- (25) Zhou, C. Y.; Ma, Z. B.; Ren, Z. F.; Mao, X. C.; Dai, D. X.; Yang, X. M. Chem. Sci. **2011**, *2*, 1980–1983.
- (26) Shen, M.; Henderson, M. A. J. Phys. Chem. Lett. 2011, 2, 2707–2710.
- (27) Ahmed, A. Y.; Kandiel, T. A.; Oekermann, T.; Bahnemann, D. J. Phys. Chem. Lett. 2011, 2, 2461–2465.
- (28) Guo, Q.; Xu, C.; Ren, Z.; Yang, W.; Ma, Z.; Dai, D.; Fan, H.; Minton, T. K.; Yang, X. J. Am. Chem. Soc. **2012**, 134, 13366–13373.
- (29) Shen, M.; Henderson, M. A. J. Phys. Chem. C 2012, 116, 18788– 18795.
- (30) Shen, M.; Acharya, D. P.; Dohnálek, Z.; Henderson, M. A. J. Phys. Chem. C 2012, 116, 25465-25469.
- (31) Kunat, M.; Burghausb, U.; Wöll, Ch. Phys. Chem. Chem. Phys. 2004, 6, 4203-4207.

- (32) Awate, S. V.; Deshpande, S. S.; Rakesh, K.; Dhanasekaran, P.; Gupta, N. M. Phys. Chem. Chem. Phys. **2011**, *13*, 11329–11339.
- (33) Chiarello, G. L.; Aguirre, M. H.; Selli, E. J. Catal. 2010, 273,
- 182–190. (34) Chiarello, G. L.; Ferri, D.; Selli, E. J. Catal. **2011**, 280, 168–177.
- (35) Kominami, H.; Sugahara, H.; Hashimoto, K. Catal. Commun.
- **2010**, *11*, 426–429. (36) Guo, Q.; Xu, C.; Yang, W.; Ren, Z.; Ma, Z.; Dai, D.; Minton, T. K.; Yang, X. J. Phys. Chem. C **2013**, *117*, 5293–5300.
- (37) Yuan, Q.; Wu, Z.; Jin, Y.; Xu, L.; Xiong, F.; Ma, Y.; Huang, W. J. Am. Chem. Soc. **2013**, 135, 5212-5219.
- (38) Phillips, K. R.; Jensen, S. C.; Baron, M.; Li, S. C.; Friend, C. M. J. Am. Chem. Soc. 2013, 135, 574–547.
- (39) Ren, Z.; Guo, Q.; Xu, C.; Yang, W.; Xiao, C.; Dai, D.; Yang, X. Chin. J. Chem. Phys. 2012, 5, 507–512.
- (40) Zehr, R. T.; Henderson, M. A. Surf. Sci. 2008, 602, 1507–1516.
 (41) Zhang, Z.; Bondarchuk, O.; White, J. M.; Kay, B. D.; Dohnalek,

Z. J. Am. Chem. Soc. 2006, 128, 4198-4199.

- (42) Du, Y.; Petrik, N. G.; Deskkins, N. A.; Wang, Z.; Henderson, M. A.; Kimmel, G. A.; Lyubinetsky, I. *Phys. Chem. Chem. Phys.* **2012**, *14*, 3066–3074.
- (43) Goodmen, D. W.; Yates, J. T., Jr.; Peden, C. H. F. Surf. Sci. 1985, 164, 417–424.
- (44) Denzler, D. N.; Frischkorn, C.; Wolf, M.; Ertl, G. J. Phys. Chem. B 2004, 108, 14503-14510.
- (45) Xu, L.; Ma, Y.; Zhang, Y.; Teng, B.; Jiang, Z.; Huang, W. Sci. China Chem. 2011, 54, 745–755.
- (46) Pölzl, H.; Strohmeier, G.; Winkler, A. J. Chem. Phys. 1999, 110, 1154–1162.